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Abstract

This paper examines the fundamental tradeoff between ezploration and exploitation

in a Genetic Algorithm (GA). An immigration operator is introduced, that infuses

random members into successive GA populations. It is theorized that immigration

maintains much of the exploitation of the GA while increasing exploration. To test

this theory, a set of functions are designed that often require the GA to perform an

excessive number of evaluations to find the global optimum of the function. For these

functions, it is shown experimentally that a GA enhanced with immigration (1) reduces

the number of trials that require an excessive number of evaluations and (2) decreases

the average number of evaluations needed to find the function optimum



I. Introduction

The tradeoff between exploration and exploitation in serial Genetic Algorithms (GA's) for

function optimization is a fundamental issue [1]. If a GA is biased towards exploitation,

highly fit members are repeatedly selected for recombination. Although this quickly pro-

motes better members, the population can prematurely converge to a local optimum of

the function. On the other hand, if a GA is biased towards exploration, large numbers of

schemata are sampled which tends to inhibit premature convergence. Unfortunately, exces-

sive exploration results in a large number of flmction evaluations, and defaults to random

search in the worst case. To search effectively and efficiently, a GA must maintain a balance

between these two opposing forces.

This study experimentally examines an immigration operator which, for certain types

of functions, allows increased exploration while maintaining nearly the same level of ex-

ploitation for the given population size. Section II provides relevant background material

on this topic and develops the motivation for this study. In section III, we describe the im-

migration operator, its incorporation into the evaluation, selection and recombination cycle

of a Genetic Algorithm, and predict the behavior of the "Modified" Genetic algorithm.

In section IV, the implementation of two genetic algorithms is described. One algorithm

is based on steady state GA's, and the other is based on restarted GA's as described by

Goldberg [2]. Also described is the implementation of the two GA's modified with the

immigration operator.

To compare the performance of each GA with and without immigration, a suite of test

functions is developed. Each function is characterized by different types of local and global

optima. The local optima are designed to provide traps that the genetic algorithm must

successfully avoid or recover from in order to achieve a global optimum. These functions are

defined in section V. Section VI discusses the experiments performed on the test suite and

presents each GA experiment in terms of fitness assignment, population sizes, mutation

rate and immigration rate. The results of the GA experiments are examined in terms

of the number of evaluations required to find the global optimum of each function and

are presented in Section VII. It is shown that a GA modified with immigration reduces

the average number of evaluations required to find the function optimum over a range of

population sizes. It is further shown that the number of trials requiring an excessive number

of evaluations is reduced for functions in this set. Section VIII provides conclusions and

recommendations for further research.



II. Background and Motivation

Population size is one parameter that directly effects the balance between exploration and

exploitation. DeJong [3] noted that increasing the population size improves long-term

performance of a GA at the expense of on-line performance for his test suite. In an extensive

study, Schaffer et. al. [4] tested GA parameters for an expanded suite of functions and

measured on-line performance. The study indicated that functions with many local optima

have good on-line performance with larger population sizes. However, the study noted that

an excessively large population imposes an increased number of evaluations per generation

and produces poor overall performance.

As these studies showed, increasing the population size of a GA supplements the amount

of "raw material" available for processing. If the necessary material is present in the initial

population, the GA can converge on an optimal solution. If the initial population size is

very large, the optimal schemata may very likely be present and the optimal solution will

be found.

However, large population size can lead to an inefficient GA. The GA processes the

schemata contained in the "raw material" and exploits those schemata that perform well. As

the population size grows and the selection "pie" is divided into more slices, the exploitation

decreases. A decrease in exploitation means that better schemata propagate at a slower rate.

This forces the GA to increase the number of population samples over repeated generations

in order to determine the optimal schemata, aud slows convergence of the GA.

Goldberg [2] also emphasized the tradeoff between schema processing (exploration) and

convergence rate (exploitation) with regard to population size. To combat slow conver-

gence in serial GA's while finding the optimum of a function, Goldberg suggested using

small population GA's that are restarted after convergence. The restart procedure consists

of keeping only the best individuals of the converged population and replacing other mem-

bers by randomly generated individuals. Goldberg shows that this procedure maintains a

high rate of schema processing, a cost measure developed to examine GA performance. In-

tuitively, this technique maintains a very high level of exploitation, since small populations

rapidly converge to tile best schemata present. Exploration is also enhanced by restarting

the population with random members after convergence. Therefore, this technique seems

to achieve some balance between the two GA forces.

Given that small population GA's may not possess the necessary schemata to find the

optimal solution, and large population GA's can be inefficient in schema processing, this

study examines the effect of continually replacing the worst members of a GA population



with randommembers.Thetechniqueis calledimmigration. For GA's of the type tested

by DeJong [3] and Schaffer et. al. [4], immigration increases the amount of "raw ma-

terial" available to the GA, and enhances exploration without increasing population size.

For Goldberg's restarted GA, immigration allows increased exploration while the popula-

tion converges, and may prevent quick convergence to a local optimum. This is especially

significant if the test function contains local optima that are difficult to escape.

III. A GA with the Immigration Operator

To balance exploration with exploitation, we propose the following algorithm that incor-

porates the immigration operator into the general structure of a Genetic Algorithm. A

preliminary version of this algorithm was originally presented in [5].

The Modified Genetic Algorithm

1. Evaluate each member of the population and assign a fitness value.

2. Replace m current worst members of the population with m randomly generated and

evaluated members. (Immigration Operator)

3. Probabilistically select a subset of members based on fitness.

4. Recombine selected members to form children.

5. Replace the worst members of the population with children.

6. Mutate some members to maintain population diversity and perform local search.

Mutation is not performed on one copy of the current best member.

With each generation of the GA, random members are immigrated and replace the worst

members in the population. It is important to note that the number of random individuals

substituted into the population each generation (m, called the immigration rate) is small

compared to the size of the population. The advantages and tradeoffs of immigration are

described below:

1. When a GA is initialized its population of n random members must contain most

of the "raw material" required to assemble the optimal string through selection and

crossover. With smaller population GA's, the necessary schemata to build the optimal

string may not be present in the initial population. If this is the case, the GA must

rely on mutation to bring in the necessary schemata, which can be very inefficient,



especiallyin problemswith many local optima. The immigration operatorallows
the GA to sample many more individuals during search, and more easily acquire the

necessary structure to find the optimal string. However, immigration does not increase

the size of the population, since random members replace poor performers. Therefore,

immigration allows a size n population to explore the space of a larger population.

. Since the actual population size is not increased to accomplish the added exploration,

the high performing schemata in the population can propagate at nearly the same

rate as a GA without immigration. In contrast, if the population size is increased

to enhance exploration, the schemata propagate more slowly, due to decreased selec-

tion pressure on good schemata. Therefore, immigration increases exploration while

maintaining selection pressure (exploitation).

. When a GA operates on a deceptive function, low-order schemata that are present

in the optimal string have poor average fitness values. Individuals containing these

schemata perform poorly, and are replaced in the population during the selection and

recombination process. Immigration provides the GA with repeated opportunities to

acquire optimal building blocks, even after they have been discarded.

. The inclusion of an immigration operator does force a tradeoff in the GA. Immigra-

tion exchanges poor performers with random members. Each random member must be

evaluated, which may increase the number of evaluations required to find the function

optimum. However, immigrants can also bring missing structure to the population

which should reduce the number of evaluations required to find the optimum. There-

fore, the tradeoff of increased evaluations vs. increased structure must be examined

experimentally to determine the applicability of immigration in a GA.

One way to look at a GA modified with the immigration operator is as a GA with a large

"virtual" population that maintains much of the selection pressure of a smaller population.

IV. The Implementation of Two Genetic Algorithms

In this study, two different GA's were implemented, each with and without immigration.

The first algorithm is a steady state GA. Each iteration of the algorithm we used is de-

scribed as follows:



Steady State GA

1. Evaluateeachnewmemberof the populationand assigna fitnessvalue.

2. Probabilisticallyselecttwo membersfrom the population basedon fitness. These
membersareparents.

3. Performone-pointcrossoveron the parentsat a randomstring position to form two
children.

4. Probabilisticallyperformmutationon the children.

5. Replacethe two worstmembersof the populationwith the children.

6. Probabilisticallyperformmutationon the restof thepopulation(optional).

The algorithmis modifiedto includeimmigrationby the addition of the followingstep:

1.5. Generateandevaluatem random members and replace the m worst members of

the population with the m random members.

The second algorithm is based on Goldberg's restarted GA. Given a population of size

n, each iteration of the algorithm proceeded as follows:

Restarted GA

1. Evaluate each member of the population and assign a fitness value.

2. Compute the bitwise convergence of the population.

3. If the convergence is greater than a given threshold, replace all but the best two

members of the population with randomly generated and evaluated members.

4. Probabilistically select n - 2 members from the population based on fitness.

5. Randomly order the n - 2 selected individuals and form pairs. These pairs are parents.

6. Perform one-point crossover on each set of parents at a random string position to form

children.

7. Replace the n - 2 worst members of the population with the children.
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8. Probabilisticallyperformmutationon thechildren.

For selection,the restartedGA usedStochasticUniversalSamplingas describedby
Baker[6].

Thealgorithmis modifiedto includeimmigrationby the additionof thefollowingstep:

1.5. Generateand evaluatem random members and replace the m worst members of

the population with the m random members.

Only n -2 members are selected each generation to insure survival of the best two

performing members.

V. Test Suite of Functions

As stated earlier, immigration imposes a tradeoff in a GA. The added structure introduced

by the random members occurs at the cost of evaluating each random member immigrated.

Given this tradeoff, the type of functions where immigration should achieve a favorable

balance between these factors and increase performance of the steady state GA are those

functions with local optima that are difficult to avoid or escape. Functions of this nature

require the steady state GA to be more circumspect while converging, and therefore may

require sampling more structure. Immigration introduces the needed structure, which may

have been discarded from the population. By increasing the structure available to the GA,

immigration should reduce the chance of converging at a local optimum, and thereby reduce

the overall number of function evaluations by the steady state GA.

On the other hand, on functions that are unimodal, a steady state GA with immigration

should perform poorly. A steady state GA operating on a unimodal function has a reduced

chance of losing the structure necessary to find the global optimum. Adding the immigration

operator introduces redundant structure at the cost of function evaluations. In this case,

the tradeoff between added structure vs. added evaluations does not achieve a favorable

balance, since the added structure would already be in the population. Therefore, a steady

state GA with immigration should increase the number of function evaluations required to

find the global optimum of a unimodal function.

It is difficult to predict the effect of immigration on a restarted GA. Like the steady

state GA, immigration should allow a small population GA to sample more structure, and

help prevent the GA from settling into a local optimum from which it is difficult to escape.

This should reduce the number of function evaluations required by the GA for multimodal

functions.



Forunimodalfunctions,it is reasonableto believethat the smallpopulationmust con-

verge a number of times before the global optimum of the function is found. Each conver-

gence imports a host of new random members. It is difficult to predict whether importing

random members after convergence is more efficient than immigrating random members

during convergence, since both techniques maintain a high rate of schema processing.

The experimental suite consists of a set of six functions that have different types of local

and global optima. The suite was created to examine the ability of a GA to escape or avoid

difficult local optima. This is reflected in the number of function evaluations required to

find the global optimum of the function. By using a suite of this nature, one can determine

the type of problems that prove difficult for a GA to solve, and show how the immigration

operator affects performance.

Each of the functions is defined on a 20 bit binary string. The optimum cost value

for each function is 0.0, which is the minimum value of the function. The functions are

described as follows:

1. F1 (ODDEVEN): The purpose of this function is determine how well a GA can com-

bine low-order, high-performing schemata into a structure where good local perfor-

mance may lead to poor global fitness.

A sliding window of length 4 is moved one bit at a time over a twenty bit member.

The maximum cost is assigned 17.0. Each time the pattern 0101 or 1010 appeared

in the window, 1.0 is subtracted from the cost. A pattern of alternating l's and O's,

01010101010101010101 or its complement produces the minimum cost of 0.0. A string

of all l's or all O's has the maximum cost of 17.0.

For example, the string 01010111111111111111 has a functional value of 17.0 - 3.0 =

14.0 since there are three 4 bit strings of alternating patterns. The first one starts

at position 0 and is 0101, the second begins at position 1 and is 1010 and the third

begins at position 2 and is 0101.

This function contains local minima (optima) that may trap the GA. Consider the

member 01010101011010101010. This member has a cost of 17.0 - 14.0 = 3.0 which

would indicate that it is a near optimal member. However, the member must actually

invert the values of 10 consecutive bits in order to achieve the the optimal configura-

tion, which is a large Hamming distance. Such large Hamming distance disturbances

are difficult to create through the mutation operator without destroying the good

structure in the population. Therefore, if the population converged around this pat-

tern or a similar one, the GA would be trapped in a local optimum. The example



demonstratesthat the combinationof short-order,high-performingbuilding blocks
mayproducea string that is far from the globaloptimum.

. F2 (DECEPT1): The purpose of this function is to determine the performance of a

GA on a difficult, two bit deceptive problem.

The 20 bit member represents four non-overlapping fields, each of length 5 bits. The

maximum cost is assigned 28.0. For each five bit field, 1.2 is subtracted from the

maximum cost for each bit in the field that is a 1. However, if all five bits in the

field are 0, 7.0 is subtracted from the maximum cost. Therefore, a field of five 1 bits

subtracts 6.0 from the maximum cost, so the member 11111111111111111111 has a

cost of 4.0. The minimum cost member is all O's, and has a cost of 0.0.

For example, the member 00000111111010100001 subtracts 7.0 for the maximum cost

for bits 0-4, 6.0 for bits 5-9, 3.6 for bits 10-14 and 1.2 for bits 15-20, for a total cost

of 28.0- 17.8 = 10.2

This function falls within the class of GA-hard problems [1], since it contains low-

order deceptive schemata. These indicate that the function minimum is a string of all

1 bits when it is really a string of all 0 bits. In terms of average member fitness, this

function can be described as:

• f(*...*0....*) < f(*....1....*)

• f(*...*00*-..*) < f(*...*01*-..*), f( *. . .*10*. . .*) < f(*...*ll*...*)

• Also, f(*...*000....*) < f(*...'111"...*)

3. F3 (DECEPT2): The purpose of this function is to determine the performance of a

GA on a simpler, one bit deceptive problem.

A sliding window of length 4 is moved one bit at a time over the twenty bit member.

The maximum cost is assigned 51.0. At a given window location, each 1 bit in the

window subtracts 0.5 from the maximum value. If all bits in the window are 0, 3.0

is subtracted from the maximum value. The minimum cost of the function is 0.0 and

occurs when each bit in the individual is 0. When each bit in the individual is 1, the

cost is 17.0. For example, the string 11110000111111111111 would have a cost of 22.0.

This function also contains low-order deceptive schemata, that indicate the function

minimum is a string of all 1 bits, when it is really a string of all 0 bits. In terms of

average member fitness, this function calt be described as:



• f(*-.-*0*...*) < f(*...*l*...*)

• f(*...*00*...*) < f(*...'11"...*)

4. F4 (MIRROR): The purpose of this function is to examine the ability of a GA to

process high-performing, high-order schemata while maintaining the consistency of

low-order schemata. The cost function is designed to be much more sensitive to the

high-order schemata than the low-order schemata.

A maximum cost of 39.0 is assigned. Bit 19 of the member is made contiguous to

bit 0 for wrap around. For each bit that is the same as its rightmost neighbor, 0.5

is subtracted from the cost. Also, if bit i (0 _< i _< 9) and bit i + 10 differ, 3.0 is

subtracted from the cost (e.g. if bit 1 is different from bit 11, 3.0 is subtracted, if bit 2

is different from bit 12, 3.0 is subtracted, etc.). The minimum cost of 0.0 occurs when

a string of ten l's is followed by a string of ten O's. Since wrap around is allowed, the

pattern can begin anywhere in the member. A string of l's or all O's has a cost of 20.0

For example, 00001111111111000000 has cost 0.0 since ten l's are followed by ten O's.

The string 10101010101010101010 has a cost of 9.0.

This function should prove difficult for the GA to solve. Consider the member

00011100001110001111. It has a cost of 2.0 yet it is Hamming distance 6 away from

the optimal solution. This forms a local optimum from which it is very difficult to

escape.

For this function, the major reduction in cost occurs when high-order schemata are

consistent, with a slight reduction when low-order schemata are consistent. As shown

in the example, this can lead to members that have strong high-order consistency, but

poor low-order consistency. This creates local minima that prove difficult for a GA

to avoid or escape.

5. F5 (EIGHTAWAY): This function tests a GA's ability to assemble schemata that are

of different order. The function is more sensitive to higher-order schemata than it is

to low-order schemata.

A maximum cost of 41.0 is assigned. For each bit i in the member different from bit

i + 1, subtract 0.5 from the cost. Also. the cost is reduced as follows:

(a) For(0 < i < 4)

i. Let m = i, let n = rn + 8

ii. Repeat

10



.

A. If bit m is different than bit n subtract 2.0 from the cost.

B. Let m-- n. Let n-- m ÷ 8

C. Ifn >20, n= n-20

iii. Until n = i

The minimum of this function occurs at 01011010101001010101 or its complement. A

member of all O's or all l's has the maximum value of 41.0

This function forces schema consistency for defining lengths 4, 8, 12 and 16. The

function is very sensitive to these high-order building blocks. Consistency should also

be maintained for low-order schemata, but must be violated in some instances in order

to achieve the optimal string. The local optima this function possesses are similar in

nature to those possessed by the function F4 (MIRROR).

F6 (ONEMAX): This is the same bit counting function described by Ackley [7] and is

unimodal. A maximum cost is assigned 20.0. Each 1 bit subtracts 1.0 from the cost.

The minimum cost occurs when all 20 bits axe 1 and has a cost of 0.0.

VI. Description of Experiments

The focus of the experiments is to determine the effect of immigration in a Genetic Algo-

rithm on the test suite of functions. As stated earlier, the immigration operator should

increase the exploration of a GA without significantly decreasing the exploitation of the

GA.

For the steady state GA, the increased exploration should prevent the GA from prema-

turely converging and becoming trapped in a local minima. This fact should be reflected in

the number of GA trials that require an excessively long time to find the function optimum.

Also, since the population size is maintained, the GA should have the exploration power of

a larger population with the exploitation of a smaller one. This would be reflected in the

average number of function evaluations required to find the global optimum. Therefore, for

the steady state GA, two performance criteria are examined:

1. The average number of evaluations required to find the function optimum

2. The number of trials that required an excessive number of evaluations to find the

function optimum. These trials are called "outliers".

For the restarted GA, the inherent reinitialization process should prevent the population

from becoming trapped in a local optimum for many generations. Becoming trapped in a

11



local optima leads to an excessive number of evaluations, or an outlier. Since the restarted

GA should prevent this, immigration should not significantly reduce the number of outliers

for an experiment. However, immigration does increase the amount of exploration per-

formed by the GA while the population is converging. The increased exploration may allow

the GA to be more circumspect and avoid local minima. Avoiding local minima should

decrease function evaluations. Therefore, if immigration aids this algorithm, it would be

reflected in the average number of function evaluations required to find the optimum.

A. Design of the steady state GA experiment

Since exploration vs. exploitation is the focus of this work, each function is evaluated over

a range of population sizes. The smallest population size is 30. For each function, the

population sizes are repeatedly incremented by 10 members until the GA performs worse

than with the previous population size.

The fitness function first ranks each member of the size n population. Then, a fitness

value is assigned to each member s using the equation:

Fitness(s) = ezp(3 n - rank(s))
n

The above fitness assignment curve maps the best member to fitness value 20.0 and the

worst member to fitness value 1.0. Using these exponential constants, the best 50 percent of

the population has a ratio of 4.5:1 in fitness values. An exponential curve is used to accen-

tuate better performing members while assigning similar fitnesses to poor performers. The

curve also prevents high-performing individuals from taking over the population entirely,

so the fitness function is not unduly sensitive to cost values. Davis [8] has also used ranked

exponential fitness assignment.

The immigration rate m (number of randonl individuals immigrated each generation) in

the experiments ranges from 0 to 4 individuals per generation. Also, a one-point crossover

scheme is used.

The probability of child mutation is fixed at 0.005 mutations/bit. Early experimentation

determined that the performance of the steady state GA improved when members of the

population other than the current children were allowed to mutate. This seemed most

important as the population begaal converging, so a dynamic mutation rate as a function

of convergence is used. The dynamic population mutation rate is given by the equation:

Mutations�Bit = 0.015(C - 0.5)

12



(where C is the bitwise convergence percentage of the population and ranged from 0.5

to 1.0).

Again, each population member is 20 bits long. Each experiment is assigned a population

size and immigration rate, and is tested with 500 separate GA trials, each with a unique

random population. Each GA trial counts the number of function evaluations until the

global optimum is found. The maximum number of evaluations allowed per trial is 50000.

This is performed on all functions in the test suite.

B. Design of the restarted GA experiment.

For this experiment, the population sizes begin at n = 14. For each function, the popula-

tion size is increased by 2 members until the GA performs worse than with the previous

population size.

The fitness function first ranks each member of the size n population. Then, a fitness

value is assigned to each member s using the equation:

Fitness(s) = exp( t.5 n - rank(s))
n

which assigns fitness values between 1.0 and 4.5. A smaller exponential constant (1.5

instead of 3.0) is chosen for this small population GA. This provides most of the population

members with some chance to compete. However, this fitness scheme does enforce a 4.5:1

fitness ratio between the best and worst members of the population.

The immigration rate m in the experiments ranges from 0 to 4 individuals per generation.

Also, a one-point crossover scheme is used. The probability of mutation is set at 0.005

mutations/bit.

For functions F1 - F5, the threshold convergence ratio is set 0.85. In other words, when

the population is 85 percent bitwise converged, the two best members are kept and random

members fill the remainder of the population. This convergence ratio was selected after

some experimentation with values of 0.75 and 0.95. In general, for functions F1 - F5, a

convergence value of 0.75 forced the GA to import random members before good structure

had been developed, and led to an increased number of function evaluations. A convergence

value of 0.95 often required convergence of members to a local optimum which was already

present in the population. This also led to an excessive number of function evaluations.

For F6, a unimodal function, a convergence ratio of 0.95 provides the best performance.

For this function, the population could not settle into a local optimum and could continue

useful schema processing to a higher degree of convergence.

13



As with the steadystate GA, eachpopulationmemberis 20 bits long.

experimentalconstraintsarealsopresent.

The same

VII. Experimental Results

The experiments provided a measure of difficulty for each of the six functions in the suite.

Figures la-lf present a comparison of the performance of the steady state GA with immi-

gration (dashed bars) and without immigration (solid bars) on functions F1 - F6 of the test

suite. Figures 8a-8f present a comparison of the performance of the restarted GA. These

plots reflect the average number of evaluations required by the GA to find the optimum

value of each function. The number of immigrations per generation that produced these

results is labeled in each figure.

Based on the experimental results, both GA's easily solved function F6 (ONEMAX)

which is a unimodal function. This was to be expected. Functions F1 (ODDEVEN) and

F3 (DECEPT2) proved only a little more difficult to the GA's. This indicates that the

GA does a good job assembling low-order optimal schemata into an optimal string. It also

indicates that the GA can overcome some deception in its search.

Function F4 (MIRROR) was next in level of difficulty, followed at a distance by F5

(EIGHTAWAY). Both of these functions required the development of high-order schemata

and the consistency of low-order building blocks. The difficulty of the GA in achieving the

global optimum of each function may be due to the crossover operation used. The strength of

one-point crossover is its ability to assemble low-order building blocks into optima] strings.

High-order schemata have a greater chance of being destroyed, as was demonstrated by

these experiments. Perhaps the performance of the GA's would improve using a crossover

mechanism that is less positionally biased.

Function F2 (DECEPT1), a two-bit deceptive function, proved extremely difficult to

both GA's. When compared to function F3, a one-bit deceptive function, one can see that

increased deception has a profound effect on the optimization capabilities of a GA.

The next sections describe in detail the experimental results, and examine effects of

immigration on a Genetic Algorithm.

A. Steady state GA

The smallest average number of evaluations for functions F1 - F5 occurred when immigration

was present. This was expected, since these functions contain many local optima. For

14



function F6, the steady state GA without immigration outperformed the modified GA.

Again, this was predicted, since F6 is a unimodal function.

It is important to note that these figures provide the best results of the steady state

GA with immigration. The immigration rate that performed best for a function is called

the "optimal" immigration rate for that function. In general, all immigration rates (greater

than 0) up to and including the optimal rate resulted in an improvement in performance

over the non-modified GA.

For function F1, (Fig. la) the GA without immigration produced the best results

at a population size of 80 and required an average of 1688 function evaluations to find

the optimum solution. With 2 immigrations per generation at a population size of 60,

the GA required only 1352 function evaluations. Therefore, the GA without immigration

resulted in a 24.8 percent increase in search time over the GA with immigration. In fact for

each function F1 - F5, immigration resulted in a reduction in the number of .function

evaluations.

Examining Figure 1, it is interesting to note that for most of these functions, the re-

duction in function evaluations using immigration is largest for small populations, and

decreases as the population size increases. This indicates that the smaller populations re-

quire the added exploration that immigration provides, while larger populations possess

sufficient exploration power.

Also, in most trials shown in Figure 1, the GA with immigration performed better than

a GA with 10 more population members without immigration. This provides more evidence

that immigration allows the GA to search the space of a larger population.

Further, in F1, F3 and F5 the optimum with immigration occurs in smaller populations

than the optimum without immigration. This lends credence to the theory that immigration

allows small populations to retain their selection pressure. This is demonstrated further in

Figures 2-7.

The histograms in Figures 2-7 present the results of 500 GA trials on each function with

and without immigration. The figures present the number of trials (Y axis) that require

a given number of function evaluations (X axis) to find the global optimum for a range of

population sizes. The different population sizes are represented by solid, dashed and dotted

lines. Figures 2a - 7a show results of the GA without immigration. Figures 2b - 7b show the

results with optimal immigration. For example, in Figure 2a, the GA without immigration

and a population size of 40 (solid line) found the optimal solution in 200 function evaluations

(X a_s) in 129 out of its 500 separate trials for function F1.

In order to reduce the length of the X axis, all trials that require an excessive number
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of function evaluations are grouped together at the last point on the X axis. For example,

in Figure 2a, the GA with no immigrations and a population size of 40 had 78 points that

required more than 5000 evaluations to find the optimal solution. These points are referred

to as "outliers".

Examining the results of the GA without immigration (2a - 7a), one can see that the

peak generally shifts to the right with increasing population size. This demonstrates the

decrease in selection pressure, which inhibits the GA from finding easy solutions quickly.

From these figures, one also notes that increasing population size reduces the number of

outliers. This indicates that an increase in population size increases the exploration power

of the GA.

Let us now compare the GA without immigration to the GA with immigration. As

shown in Fig. 2, the GA with immigration (Fig. 2b) has significantly fewer outliers than

the GA without immigration (Fig. 2a). This is an example of how immigration can increase

exploration. Further, the peaks of Fig. 2b occur at about the same number of function

evaluations (X axis) as the peaks in Fig. 2a. As discussed above, if selection pressure was

decreased by immigration, we could expect the peaks in Figure 2b to be shifted right of

the peaks in 2a. This is not the case, so the GA with immigration maintains selection

pressure and exploitation power.

Figures 3 and 4 present similar results. Further, for these functions the magnitude of

the peaks actually increased with immigration. This is due to the reduction in the number

of function evaluations for trials to the right of the peaks, another indication of increased

exploration.

Figures 5 and 6 show the peaks occurring near the same X axis location, but again show

that immigration does not always eradicate all the outliers for various population sizes. It

does show, however, that immigration still reduces the number of outlying trials. Since

these outliers contribute heavily to the average number of function evaluations required to

find the optimum (Figure la-f), it is clear that eliminating outliers reduces this value.

Figure 7 shows the result of function F6 with no immigrations and with 1 immigration.

These experiments verified our prediction that a steady state GA with immigration would

perform poorly on a unimodal function. As shown by the plot, immigration shifted the peak

to the right and reduced it. The average number of evaluations rose from 358 (without

immigration) to 461 (with immigration). In this case, immigration did not achieve the

balance between added evaluations and missing population structure. This indicates that

immigration is not necessary for functions in which the structure can be selected reliably

and propagated easily through the population of a steady state GA.
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Overall, theseexperimentsshowthat a populationsizebetween60and 70 members
performsbest for the steadystateGA describedabove.To improveperformance,an im-
migrationrate of 2 or 3 memberspergenerationshouldbeusedon functionsthat contain
difficult localoptima.

B. Restarted GA

As with the steady state GA, the smaLlest average number of evaluations for functions F1 -

F5 occurred when immigration was present in the restarted GA. This was predicted, since

these functions contain many local optima.

However, for function F6, the unimodal function, the restarted GA with immigration

outperformed the GA without immigration. This indicates that adding random members

during convergence improves the efficiency of a restarted GA over both unimodal and mu-

timodal functions. This phenomena is quite interesting, and should be studied in further

detail.

Again, these figures provide the best results of the restarted GA with immigration. In

general, all immigration rates (greater than 0) up to and including the optimal rate resulted

in an improvement in performance over the non-modified GA.

These experiments show that a population size between 16 and 20 members performs

best for the restarted GA described above. To improve performance, an immigration rate

of 2 or 3 members per generation should be used on functions that contain difficult local

optima. Unimodal functions are more efficient at smaller populations, and can also be

benefit from the effects of immigration.

VIII. Conclusions

This study has examined the tradeoff between exploration and exploitation in Genetic

Algorithms. It proposed that a GA could increase exploration power while maintaining

selection pressure by replacing poor performing individuals in a population with random

members.

The results of the experimentation show that immigration improves the performance of

steady state GA's when optimizing functions that contain local optima which are difficult

to avoid or escape. The experiments also show that immigration improves performance for

a spectrum of functions using a restarted GA.

Although these experiments are complete, there are several recommendations for future

work. Testing immigration on a generational GA would be the next logical step of this
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research.Also,afurtherexaminationof immigrationvs. restart wouldbein order.Finally,
testing functionsF4 (MIRROR) and F5 (EIGHTAWAY)usinga lesspositionallybiased
crossoveroperator,suchasuniformcrossover,wouldproveinteresting.

In conclusion,this studydemonstratesthat immigrationisa viableoperatorfor improv-
ing the efficiency of GA's on difficult optimization problems.
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